报告题目:Spatiotemporal patterns in a diffusive predator-prey system involving nonlocal interactions
报告人:蒋卫华教授(哈尔滨工业大学)
报告时间:2022年7月26日下午15:00
报告地点:复杂系统研究所(腾讯会议)
报告摘要:In this talk, taking the diffusive Holling-Tanner predator-prey model with no-flux boundary conditions as an example, we mainly want to talk about the first bifurcation curve, which shows that the coexistence equilibrium can lose its stability through not only codimension one Turing (Hopf) bifurcation, but also codimension two Turing-Hopf, Turing- Turing, Double Hopf and Bogdanov-Takens bifurcations, etc. In addition, the explicit formulas for the coefficients of normal forms for Turing-Hopf,Double Hopf and Bogdanov-Takens bifurcations of general PFDEs involving nonlocal interactions, are presented concisely. Some spatiotemporal patterns are theoretically predicted and shown numerically.
报告人简介:蒋卫华,哈尔滨工业大学长聘教授,博士生导师。黑龙江省工业与应用数学学会常务理事,美国数学会《Math.Review》评论员。 主要从事泛函微分方程和偏泛函微分方程的分支理论及应用的研究,在规范型的公式化以及从高余维分支研究角度揭示复杂模式的存在性和稳定性方面有一些特色工作。主持和参与多项国家自然科学基金及省部级基金项目,在国内外诸如科学通报,JDE, IMA J. Appl. Math.,DCDS,SAPM,JDDE,Physica D,DCDS B,Nonlinear Analysis,Nonlinear Anal. RWA 和J. Math. Anal. Appl. 等重要学术期刊上发表论文70余篇,出版专著一部。