报告题目:Periodic dynamics of a reaction-diffusion-advection model with Michaelis-Menten type harvesting in heterogeneous environments
报告人:陈玉明教授(加拿大罗瑞尔大学)
报告时间:2025年5月14日(9:00-10:00)
报告地点:复杂系统研究所四层(409)
报告人简介:陈玉明博士现任加拿大罗瑞尔大学(Wilfrid Laurier University)数学系正教授及博士生导师。2000年获加拿大约克大学(York University)理学博士学位。随后于2000年9月至2001年6月期间,在加拿大阿尔伯塔大学(University of Alberta)完成博士后研究,自 2001年7月起任教于罗瑞尔大学,深耕学术领域多年。主要研究兴趣为动力系统、泛函微分方程理论及其在生物数学和神经网络中的应用。已在包括 SIAM J. Math. Ana1.,SIAM J. App1.Math., Trans. Am. Math. Soc., J. Differ. Equations,Proc. Am. Math. Soc.等国际著名刊物发表论文190余篇,其成果被同行广泛引用。曾获安大略省科技与创新部早期研究者奖。主持了6项加拿大国家自然科学与工程理事会NSERC)科研基金项目,参与了3项中国国家自然科学基金面上项目。积极参与高质量人才如硕士生、博士生、博士后的培养。陈教授与中国学者有广泛交流与合作。
报告人摘要:Aquatic organisms often confront the risk of extinction due to constant drift and overfishing. Can a reasonable fishing ban satisfy the human need for sufficient aquatic proteins without depleting fishery resources? In this talk, we propose a reaction-diffusion-advection model to answer this question. The model consists of two sub-equations, which are constantly switched to describe closed seasons and open seasons with Michaelis-Menten type harvesting. We define a threshold value for the duration of the fishing ban (T) and establish the relationships betweenT* and each of the downstream end,the advection rate, and the diffusion rate. Under certain conditions, the trivial equilibrium point 0 is globally asymptotically stable if T< T* When T>T*, we obtain sufficient conditions on the existence of a globally asymptotically stable periodic solution based on the thresholds in all parameter settings.
陈玉明教授在做精彩报告